- Home
- About veski
- veski board
- veski innovation fellows
- Timothy Scott
- Benjamin Marsland
- Pierluigi Mancarella
- Vihandha Wickramasinghe
- Jon Shah
- Roger Pocock
- Richard Sandberg
- Colby Zaph
- Kenneth Crozier
- Ethan Goddard-Borger
- Colette McKay
- Luke Connal
- Mark Dawson
- Cameron Simmons
- Tiffany Walsh
- Seth Masters
- Christopher McNeill
- Matthew Call
- Edwin van Leeuwen
- Mark Shackleton
- Ross Dickins
- Ygal Haupt
- Sarah Hosking
- Michael Cowley
- Alyssa Barry
- Gareth Forde
- Marcus Pandy
- Andrew Holmes
- veski fellows
- organisational structure
- veski annual review
- veski impacts
- veski standard
- veski pin
- Contact us
- veski foundation
- Fellowships
- Programs
- News & Events
- News
- Events
- Galleries
- Newsletters
- in conversation
- veski twitter
- veski family in the media
- veski's portraits of innovation
- A banquet of problems to be solved
- A novel approach
- A very special challenge
- At the crossroad of sport and science
- Engineering a better quality of life
- Everything at her fingertips
- Forward propulsion
- Going to the ends of the earth to cure melanoma
- His link to the past and bridge to the future
- Hitting the right note
- Holding up his side of the bargain
- Lighting the way to better child cancer outcomes
- Links and reconnections
- Mining his talent to make a difference
- Putting Melbourne's science on the global stage
- Ready, set, go: the future of locomotion
- Setting his own path
- Springboarding into a slam-dunk for science
- The lens of experience
- Where dreams are made
- veski videos
- People
- veski board
- veski innovation fellows
- Timothy Scott
- Benjamin Marsland
- Pierluigi Mancarella
- Vihandha Wickramasinghe
- Jon Shah
- Roger Pocock
- Richard Sandberg
- Colby Zaph
- Kenneth Crozier
- Ethan Goddard-Borger
- Colette McKay
- Luke Connal
- Mark Dawson
- Cameron Simmons
- Tiffany Walsh
- Seth Masters
- Christopher McNeill
- Matthew Call
- Edwin van Leeuwen
- Mark Shackleton
- Ross Dickins
- Ygal Haupt
- Sarah Hosking
- Michael Cowley
- Alyssa Barry
- Gareth Forde
- Marcus Pandy
- Andrew Holmes
- Victoria Prize recipients
- Victoria Fellows
- veski sustainable agriculture fellows
- veski inspiring women fellows
- veski connection
- PAHMR recipients
New vaccine candidates for malaria
Researchers have shown that higher levels of Plasmodium falciparum antibodies are protective against severe malaria in children living in Papua New Guinea. Children who have higher levels of antibodies to a specific short amino acid sequence in the malaria parasite, P. falciparum, have much lower rates of clinical and severe malaria. This amino acid sequence, an antigen, is similar among P. falciparum strains elsewhere in the world, suggesting that this antigen would make a good target for a malaria vaccine. The research is published in Infection and Immunity, a journal of the American Society for Microbiology.
This work shows that people who lack immunity to the malaria parasite are more likely to experience malaria symptoms. These people could be identified by their relative lack of antibodies to this antigen, said corresponding author Alyssa Barry, BSc (Hons), PhD, Associate Professor, and a group leader within the Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
That amino acid sequence, known among scientists as the ICAM1 binding motif, is critical to the virulence of the malaria parasite because it can bind to the tiniest blood vessels in the brain, known as the microvasculature. There the parasite remains hidden from the host's immune system, causing a severe case of cerebral malaria by blocking the blood vessels and causing inflammation. The ICAM1-binding motif can vary slightly in sequence and still bind tightly, and it is a strong candidate for a vaccine target. (image: P. falciparum gametocytes)
In the study, the investigators measured antibody responses to the ICAM1-binding motif. The subjects of this study were 187 children ages 1-3, from Papua New Guinea. Once the measurements were taken, the investigators followed the children for 16 months to determine the incidence of malaria over time.
Antibody responses to the ICAM1-binding motif were associated with 37 percent less risk of high-density clinical malaria during follow-up. (A high density of the parasite in an infection is necessary, but not sufficient to cause a severe case of malaria.) Children who had severe cases of malaria during follow-up showed significantly lower levels of antibody to those sequences.
Globally, more than 200 million cases of malaria occur annually, and the disease kills an estimated 400,000 annually, according to the report. Children are hardest hit.
Source: ScienceDaily
https://www.sciencedaily.com/releases/2018/07/180706150822.htm
veski connection members in the news
Apr 2020 | Royal Society
Prof Jane Visavader, 2018 Victoria Prize for Science & Innovation recipient, elected to the Royal Societyin 2020
“The real benefit of increasing fabrication rates is the transition from prototyping, making one offs, to actually going into production.”
Assoc Prof Timothy Scott
Nov 2019 | Bionics Institute
Dr Thushara Perera, 2016 Victoria Fellow, received the prestigious AMP Foundation’s Tomorrow Fund
Tweets from @veskiorg
Tweets by @veskiorg